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Abstract
As a one-dimensional symmetric rectangular well becomes shallower, the
bound states move up to the threshold and eventually disappear, but not
without leaving a trace. Shortly after a bound state has ceased to exist, a new
resonance state appears above the well. In the interim a virtual state is formed at
the threshold which then coalesces on its way down with another virtual state
that is moving up towards it, giving rise to a pair of complex states inside
the well, which move all the way up to become the resonance above the well
and its conjugate virtual state. All this is readily deduced from the work
of H M Nussenzveig (1959 Nucl. Phys. 11 499), which may be rightfully
considered a quite exhaustive though rather intricate treatment of the problem.
In contrast to it the current quasi-analytical study is distinguished by
extraordinary simplicity, offering an excellent visualization and a thorough
grasp of the subject. Moreover, a startling phenomenon is revealed by going
beyond the energy plane considerations and looking into the behaviour of
the wavefunctions. Namely, when exterior complex scaling is deployed for
normalization of exponentially divergent states, all divergent states turn out
to be orthogonal between themselves with self-orthogonality at the point of
coalescence of two virtual states and consequent abnormality in the amplitudes
of the resonances when just formed inside the well.

PACS number: 03.65.Nk

1. Introduction

There are two different sets of boundary conditions that give rise to all the possible discrete
states of a symmetric well. The first one called outgoing waves is responsible for the bound
states (real eigenvalues inside the well) and for the resonance states (complex eigenvalues
mostly above the well). The states obtained when the second set of boundary conditions
called incoming waves is imposed are the virtual states. They may have real eigenvalues when
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inside the well (also known as antibound states) or they may be the complex conjugates of the
corresponding resonances when not limited to the real axis. In the case of real eigenvalues both
for the outgoing and for the incoming waves an analytical representation can be constructed
to follow their behaviour as a function of the well depth. The complex eigenvalues for either
of the boundary conditions are followed numerically (for the method to solve transcendental
equations of complex variable see [3]).

A one-dimensional symmetric rectangular potential well is defined by

V (x) =
{

0 (x < 0 or x > a)

−V0 (0 < x < a)

where V0, the depth of the well, is a positive number. The corresponding time-independent
Schrödinger equation is{

� ′′ + k2
0� = 0 k0 = √

2mE/h̄ (x < 0 or x > a)

� ′′ + k2� = 0 k = √
2m(E + V0)/h̄ (0 < x < a)

and its general solution is given by


� = C eik0x + C ′ e−ik0x (x < 0)

� = A eikx + B e−ikx (0 < x < a)

� = D eik0x + D′ e−ik0x (a < x)

where A,B,C,C ′,D and D′ are some integration constants, and the functions eik0x and
e−ik0x represent the waves moving towards the right and the left respectively. By requiring
C = D′ = 0 (or, alternatively, C ′ = D = 0) together with the continuity of � and � ′

transcendental equation for the outgoing (incoming) waves is obtained.

2. Outgoing boundary conditions

As the name implies, outgoing boundary conditions represent an outward flow from inside the
well. For real E > 0, k0 would be real, thus outgoing waves are represented by eik0x to the right
of the well and by e−ik0x to the left of it. However, real solutions of the transcendental equation
are possible only for E < 0, when k0 is pure imaginary, in which case the outgoing waves
become decaying exponents pertaining to the bound states. In general, the transcendental
equation for the outgoing waves is

2 cot ka = i
(
k2 + k2

0

)
kk0

(1)

and, in particular, for k0 = iκ (κ = √−2mE/h̄,E < 0) it becomes

2 cot ka = k2 − κ2

kκ
. (2)

Whereas the complex equation (1) can be dealt with numerically only, a graphical solution of
equation (2) exists (see [2]) by means of which behaviour of the bound states as a function of
the well depth can be derived in an elegant manner.

The graphical solution is done by introducing two new variables

α =
√

1 +
E

V0
and γ =

√
2mV0a2

h̄2

in terms of which equation (2) is expressed as

γα = (n − 1)π + 2 cos−1 α (n = 1, 2, . . .) (3)
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Figure 1. (a) Graphical solution of equation (3). (b) Wavefunctions of the five lowest outgoing
wave states for V0 = 8, a = 2.5,m = 1, h̄ = 1 (γ = 10). The real part of the resonance above the
well is depicted by a solid line and the imaginary part is depicted by a dashed line.

(see appendix A) and both sides of it are then plotted as a function of α. Since the right-hand
side of equation (3) is independent of γ , varying the depth of the well leaves it unaltered
while the slope of the straight line on the left changes. In figure 1(a) the graphical solution is
plotted for three different γ . Values of α at the points of intersection of the straight line with
the branches of 2 cos−1 α give the energies of the corresponding bound states according to the
formula

E = −V0(1 − α2).

It is immediately evident from the graph that as the well becomes shallower, the bound states
move towards the threshold where they eventually disappear with the exclusion of the first
bound state which always remains inside the well. The number of the bound states for a given
well depth is clearly the greatest integer contained in the quantity (γ /π + 1).

Wavefunctions of the five lowest outgoing wave states for a certain well are shown in
figure 1(b). Four of them are bound states and the fifth is the first resonance above the well.
The resonance wavefunction is normalized using ECS to be discussed in section 5.

3. Incoming boundary conditions

Incoming boundary conditions stand for an inward flow and therefore are represented by
e−ik0x to the right of the well and by eik0x to the left of it. The transcendental equation for the
incoming waves is

2 cot ka = −i
(
k2 + k2

0

)
kk0

(4)

the solutions of which are obviously the complex conjugates of those of equation (1) unless
k0 is pure imaginary, k0 = iκ , and equation (4) takes the form

2 cot ka = κ2 − k2

kκ
. (5)
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Figure 2. (a) Graphical solution of equation (6), (b) wavefunctions of the three lowest incoming
wave states for V0 = 8, a = 2.5,m = 1, h̄ = 1 (γ = 10). The real part of the complex virtual
state above the well is depicted by a solid line and the imaginary part is depicted by a dashed line.

A graphical solution for the real virtual states described by equation (5) can be done in
analogy with bound states. Using the same definition for α and γ the transcendental equation
for the real virtual states is transformed into

γα = (n − 1)π + 2 cos−1
√

1 − α2 (n = 1, 2, . . .) (6)

(see appendix B). The graphical solution of this equation is shown in figure 2 together with
a plot of ECS normalized virtual states’ wavefunctions. It should be noted that the parity
of the real virtual states corresponding to the consecutive branches of the right-hand side of
equation (6) is in reversed order to that of the bound states. The real part of the complex
virtual state is, of course, identical to the real part of the corresponding conjugate resonance
state and the imaginary part has a phase equal to π relative to the resonance.

4. Varying the depth of the well

To get an insight into what happens as the depth of the well is varied, the graphical solutions
for the bound and the real virtual states are combined in one diagram (see figure 3). By
inspecting the diagram it can be readily concluded that every time nth bound state with n � 3
reaches the threshold as a result of diminishing the depth of the well, a new n − 1 virtual state
is formed there, in addition to already existing n−1 virtual state, and as the depth of the well is
diminished further, these two virtual states move towards each other, coalesce and disappear.
Solving simultaneously the complex transcendental equation for the incoming waves, it is
found that right after the two real solutions merge into one, subsequent decrease in the depth
of the well makes this solution complex. First the new complex virtual state sits inside the well,
but as the bottom of the well is continuously pushed up, it eventually crosses the threshold.
Of course, the moment a new complex incoming wave state is formed its complex conjugate
appears as a new solution for the outgoing wave transcendental equation. Thus a disappearing
bound state is turned into a resonance via a virtual state collision. This is true for any n � 3.
Figure 4 shows these transitions for the n = 3 bound state. The n = 2 bound state never
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Figure 3. Graphical solutions for bound and real virtual states of a symmetric rectangular well
combined in one diagram.
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Figure 4. Disappearing of the n = 3 bound state and formation of a new resonance as a result of
diminishing the depth of the well. The calculations were made with h̄ = 1,m = 1

2 , a = 3.14.

becomes a resonance consistently with the fact that the n = 1 real virtual state is essentially
different from those above it, as is apparent from the graphical solution.

The values of the potential depths at which branch points, the points of coalescence of
two virtual states, occur can be determined by demanding the two sides of equation (6) to be
tangent to each other at the point of their intersection. The tangency requirement alone yields
that the energy of the branch point’s virtual state is independent of n and is given by

Ebp = − 2h̄2

ma2
.
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The transcendental equation obtained when the intersection is also taken into account is√
γ 2 − 4 = (n − 1)π + 2 cos−1 2

γ
.

For n = 1 this equation is very easy to solve (γ = 2) and it corresponds to −V0 = Ebp, which
means that after n = 2 bound state is turned into n = 1 virtual state it moves down towards
the bottom of the well until it collides with it and disappears.

It also may be interesting to note from figure 3 that for certain well depths some nth bound
state will have the same energy as the nth virtual state. The relation that must hold between
V0 and n for this to happen is

V0 =
(
n − 1

2

)2
π2h̄2

ma2

and the energy of the nth bound and virtual states will then be

E = − 1
2V0.

5. Using exterior complex scaling

Resonances and virtual states cannot be normalized in the usual sense by virtue of being
exponentially divergent. To overcome this difficulty in the case of resonances (or Gamow
functions, as this type of resonances is commonly known) Zeldovich [4] introduced a
convergence factor e−εx2

defining the ‘norm’ by: (�|�) ≡ limε→0
∫ ∞
−∞ e−εx2

�2 dx = 1.
Although this definition can be successfully extended to the bound states yielding the usual
norm [5], it fails for the virtual states. Instead ECS [6–9] can be used.

In ECS the x coordinate is rotated to the complex plane through an angle θ from the point
at which the potential V (x) becomes zero. For the symmetric rectangular well this means

x →




x eiθ (x < 0)

x (0 � x � a)

a + (x − a) eiθ (x > a)

with the time-independent Schrödinger equation in the scaled region being transformed into

e−2iθ� ′′ + k2
0� = 0

and the matching conditions for � ′ at x = 0 and x = a becoming{
e−iθ� ′

x<0 (x = 0) = � ′
0<x<a (x = 0)

� ′
0<x<a (x = a) = e−iθ� ′

x>a (x = a).

These transformations, apparently, leave the transcendental equations for the outgoing and
incoming waves unaltered. Finally, the ‘norm’ is defined by (�|�) ≡ eiθ

∫ ∞
−∞(�ECS)2 dx = 1.

It should be emphasized that this ‘norm’, of course, is not what is usually understood as a norm
in an inner product space (it would be advisable to see [10] for the description of the c-product
and for the properties of the ‘norm’ induced by it). Additionally, as is apparent from its
definition the ‘normalization’ integral is θ independent: the θ ’s job is to provide convergence
at infinity. Accordingly, normalization of resonances by ECS is completely equivalent to using
Zeldovich’ convergence factor, though ECS is absolutely indispensable for normalization of
virtual wavefunctions. It is obvious that the only way to force the real virtual states to converge
is by choosing θ > π

2 and for the complex virtual states θ should be made even larger. But to
ensure convergence of all the virtual states up to infinity it looks like θ = π is the only option
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Figure 5. The free space wave vectors of the complex virtual states for h̄ = 1, m = 1,

a = 2.5, V0 = 8.5.

(see figure 5). Thus all exponentially divergent states, namely, resonances, complex virtual
states and real virtual states become square integrable under ECS by θ = π . Of course, such
ECS makes bound states divergent; however, they are also orthogonal to all the other discrete
states when disregarding the ‘upper limits’ of the overlap integrals.

Besides furnishing the normalization tool for exponentially divergent states ECS’ ‘inner
product’ definition

(
(�1|�2) ≡ eiθ

∫ ∞
−∞ �ECS

1 �ECS
2 dx

)
provides orthogonality between all the

virtual and resonance states. This is a highly remarkable result, since it means that the two
colliding virtual states are mutually orthogonal and, hence, the virtual state at the branch point
is self-orthogonal. The self-orthogonality at the branch point can be tracked by calculating the
normalization integral of a single wavefunction of the appropriate virtual and resonance states
as is shown in figure 6. Additionally, since the normalization integral of the freshly formed
resonance vanishes in the vicinity of the branch point, it has a huge norm there, so one may
suggest that such a resonance ought to affect significantly the transmission probabilities above
the well. However, it turns out not to be the case as shown in the next section.

6. Transmission probabilities above the well

The transmission probability above a symmetric rectangular well is given by (see [2])

|T |2 = 4µ2

(1 + µ2)2 sin2 ka + 4µ2 cos2 ka

where µ = k/k0. The total transmission occurs each time ka assumes the value of an integer
times π . As the well becomes shallower the condition for ka = nπ can be fulfilled for smaller
and smaller n. For a given potential depth the smallest possible value of n is given by

n = int

[√
2mV0a

πh̄

]
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Figure 6. ECS normalization integrals of the n = 2 disappearing real virtual states and of the
freshly formed n = 2 complex virtual and resonance states in the vicinity of the branch point. The
calculations were made with h̄ = 1,m = 1

2 , a = 3.14. For the complex eigenvalues the absolute
value of the integral is plotted.
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Figure 7. Transmission probability above a symmetric rectangular well for m = 1, h̄ = 1 and
a = 2.5 as the n = 4 bound state disappears. Vth is the depth of the well corresponding to the
n = 4 bound state at the threshold, Vbp the depth of the well corresponding to the n = 3 branch
point, � = Vth − Vbp. Filled circles stand for the resonance’ positions.

so as the depth of the well is decreased a new peak for the transmission probability is formed
at the threshold whenever the depth of the well becomes
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V0 = 1

2m

(
nπh̄

a

)2

.

But this is exactly the V0 at which the n + 1 bound state arrives at the threshold. In figure 7,
the formation of a new transmission probability peak is demonstrated as the n = 4 bound state
disappears. After it has formed, the new peak moves smoothly to the higher energies without
anything special happening around the branch point.

7. Conclusions

Transitions from a bound to a resonance state in a symmetric rectangular well are excellently
visualized with the aid of the graphical solutions obtainable in the case of real outgoing and
incoming wave states. All bound states with n � 3 exhibit similar behaviour as the depth of
the well is decreased: they turn into n−1 virtual state at the threshold which then descends and
collides with an additional n − 1 ascending virtual state. The two real virtual states annihilate
each other and give rise to a new pair of complex virtual and resonance states. The value of
the energy at which this happens is the same for all n and the wavefunction of the branch point
virtual states is orthogonal to itself under the ECS ‘norm’ definition. The ECS ‘inner product’
definition also makes all the divergent states orthogonal between themselves.

Finally, apart from providing a graceful way to illustrate the transitions from bound to
resonance states the current treatment of the problem may also provide a wholesome tool for
tackling different physical problems which can be approximated by a symmetric rectangular
well with varying depth (see, for example, [11] in connection with modes of a slab waveguide).
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Appendix A. Graphical solution for the bound states

Using trigonometric identity

cot 2α = 1

2

(
cot α − 1

cot α

)
equation (2) is transformed into

cot(ka/2) − 1

cot(ka/2)
= k

κ
− κ

k

which can be split into two

cot
ka

2
= k

κ
or cot

ka

2
= −κ

k
.

The first one of the two equations corresponds to the even states (cosines inside the well) and
the other one corresponds to the odd states (sines inside the well). These equations are further
transformed into

cos
ka

2
= ±

√
k2

κ2 + k2
or sin

ka

2
= ±

√
k2

κ2 + k2

each of which contains two spurious solutions, one for + and one for −, to be excluded so that
cot(ka/2) will have positive values in the first equation and negative values in the second one.
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From the definition of k and κ it can be readily seen that

k2

κ2 + k2
= E + V0

V0
= 1 +

E

V0
.

Therefore, by defining two new variables

α =
√

1 +
E

V0
and γ =

√
2mV0a2

h̄2

the above two equations can be written as

cos
γα

2
= ±α or sin

γα

2
= ±α

and after excluding the spurious solutions
γα

2
= cos−1 α + nπ or

γα

2
= cos−1 α + nπ +

π

2
where n = 0, 1, 2, . . . .

Finally, the two equations can be combined into one

γα = (n − 1)π + 2 cos−1 α (n = 1, 2, . . .).

Appendix B. Graphical solution for the real virtual states

To obtain the solutions for the real virtual states from the bound state equations the
transformation κ → −κ should be performed, so that the even and the odd state equations
become

cot
ka

2
= − k

κ
or cot

ka

2
= κ

k
.

Similarly to the bound states these can be written as

sin
ka

2
= ±

√
κ2

κ2 + k2
or cos

ka

2
= ±

√
κ2

κ2 + k2

and since
κ2

κ2 + k2
= − E

V0
= 1 − α2

these equations can be rewritten as

sin
γα

2
= ±

√
1 − α2 or cos

γα

2
= ±

√
1 − α2

and then combined into one

γα = (n − 1)π + 2 cos−1
√

1 − α2 (n = 1, 2, . . .).
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